Learning of N-layers neural network
نویسندگان
چکیده
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
LAYERS: Yet another Neural Network toolkit
Layersis an open source neural network toolkit aim at providing an easy way to implement modern neural networks. The main user target are students and to this end layers provides an easy scriptting language that can be early adopted. The user has to focus only on design details as network totpology and parameter tunning.
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملConstructive neural network learning
In this paper, we aim at developing scalable neural network-type learning systems. Motivated by the idea of “constructive neural networks” in approximation theory, we focus on “constructing” rather than “training” feed-forward neural networks (FNNs) for learning, and propose a novel FNNs learning system called the constructive feed-forward neural network (CFN). Theoretically, we prove that the ...
متن کاملUnsupervised Neural Network Learning
In this article, we review unsupervised neural network learning procedures which can be applied to the task of preprocessing raw data to extract useful features for subsequent classication. The learning algorithms reviewed here are grouped into three sections: informationpreserving methods, density estimation methods, and feature extraction methods. Each of these major sections concludes with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
سال: 2014
ISSN: 1211-8516,1211-8516
DOI: 10.11118/actaun200553060075